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1.INTRODUCTION SASTRA

N .velopment of diagonal-tension webs is orte® t outstanding
examples of departures of aeronautical design fh@b aten paths of
structural engineering. ((\Q

eStandard structural practice had been to @@ﬁmeﬁe load bearing
capacity of a shear web was exhaust&@,When thdouaied.

*Prof. Herbert Wagner demonstg?@ that a thin wai transverse
stiffeners does not “fail” when tkpuckles — it rarforms diagonal folds
and functions as a series CkL sion diagonaldewshifeners act as
compression posts. OCQQ

*The web-stiffene $§’$tem thus functions like asrand is capable of
carrying loads \é\aﬁ‘ny times greater than those piradumuckling of the

web. A
&

Use ofﬂ?égonal-tension webs Iin the design of aanactural components
has led to significant reduction in weight.
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a) (b)
Cross sections of built-up beams.
Figure(X~

*Typical cross sections of built-up be?\ﬁ:g/ are shiowigure. The web is sufficiently thick to resist
buckling up to failing load with or@ out the aid stiffeners.

*Hence they are called “Sh@ckling resistanfoothe sake of brevity “Shear resistant” beams.

oIf the web to flange c e%fions are adequatdfiy ste stress in the built-up beams follow fairly
well the formulas of engineering theory of hagd

A

Sl pMz  q=SQ
X o |

Whereo = bending stress, g = shear flow, M = bending maim@ = static moment of area about
neutral axis, | = moment of inertia, z = distant&ber from neutral axis.



2.1 SHEAR RESISTANT BEAMS (contd.) SASTRA

Iow distribution in the web of the besubjected to a lateral shear {orce follows a parab
"Most cases the difference between the maxirfalong the neutral ;5 Yand minimum (along the

flange rivet line) shear flow in the web is ratlserall and the design of eb is based on theagee
shear flow.

QO
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Where @, = average shear flow in web; © static r@ent about neutral axis of the flangaa
Qu = static moment of the web material abo@heraéakis.

*\When the depth of the flange is sm pared wie depth of the beam (fig.1c) and the bending
stresses in the web are neglected formulasiragdified to the so called “Plate-Girder Equastin
\_

—_ L, — S
O'F%Q—}E:&A: Egn. 2a g = h_ — Eqgn.2b

L
AX
*However use @ate-Girder equations give lamgers if above mentioned assumptions are not valid.
When the d@‘nsions of the cross sections areragiréne web to flange connections, particularly if
riveted, is often overloaded and yields at low kalthe beam no longer acts as an integral unitwbe
flanges tend to act as individual beams restralnyeithe web.
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Figure 2 : Diagonal Tension Beam



jal-tension beam is defined as a built-e@nb similar in construction to a plate-girder but
Web so thin that it buckles into diagondtifoat a load well below thg@éign load (Figure 2)

*A Pure Diagonal Tension beam is a theoreticaltimgistage in whic buckllng of the web

takes place at an infinitesimally small load. Riadtstructures on%@ roach this limiting
condition asymptotically.
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(a) (b) (¢} (d)

Principle of diagonal tension. S NAGA
< -

\e\ Figure 3

*The princip «diagonal tension can be undetop considering the structure shown in Figure 3
consistin parallelogram frame of stiff bdrsiged at the corners and braced internally by two
slender didgonals of equal size.



\\m / IC CONCEPTS OF PURE DIAGONAL TENS ENS{Eohtd)

35 the applied load P is very small, the diagonals will carry equal aQ, opposite stresses

*At a certam value of P, the compression diagenihbuckle (Fig 3b) andgﬁb lose its ability to
take additional large increments of stress.

*Consequently if P is increased further by larg@amnts, the addn@ﬁ’\l diagonal bracing force must
be furnished mostly by the tension diagonal. O

At very high applied loads, the stress in the itamgiag &@ ‘will be so large that the stress @ th
compression diagonal is negligible by comparison \

*An analogous change in the state of stres{sﬁﬁ a similar frame in which the internal
bracing consists of a thin sheet (Fig 3c s of applied load, the sheet is in a stateudd p
shear, which is statically equivalent to | len& compressive stresses at 45 degrees to the

frame axes. ?‘
K

*At a certain critical value of t d, P, theshbuckles, and as the load P is increased beyond
the critical value, the tensil esses becomdlyapredominant over the compressive stresses

(Fig 3d). Q}

*The buckles dev \g\d regular pattern of diagtoidk, inclined at an angle and following the
lines of the dla@al tensile stress.

*The tensile%?rsess Is so large that the compressress can be neglected entirely by comparison,
the sheet is said to be in a statéutly developedor* pure’ diagonal tension.



(c) {d)

Forces in diagonal - tension beam .
Figure 4



314 THEORY OF PRIMARY STRESSES. (contdAp TRA

Avith a web in pure diagonal tensionhewn in figure 4(a). To physically define this
Gadition, we assume that the web is cut into esef ribbons or strips of upitMvidth, measured

horizontally. Each one of these strips is inclia¢dhe anglex to the hori@n | axis and is under a
uniform tensile stress. OQ/

» The free body diagram as shown in figure 4(bwshthe inter }rces in the strips intercepted
by the section A-A. Since all the strips have thee stress@@ resultant is located at mid-height.

*The horizontal component4-bf the resultant o:thg;j%{gﬁal forces (D) isdmaled by the

compressive forces H in the two flanges. Henc

H, = S.cota ,&QL‘?‘H =
0%
« Computing the total flange f&é? we have :
M
F=+t—4¢WH F=+—-=_cota
\8\@ h 2

» With refere «to figure 4 (c), each strip i$ @uright angles, giving the stress carrying face

width of 1 @). The force on each strip is therefar¢ sin a. The number of strips
interceptéd by section A-A is equaliacot a. Therefore, the total force D on all the strips is

D =ot.sinag xh.cota D=onht.cosr

—ECO'[O’ — > Egn. 3a
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«But from statics, we have : D = S «\?\
sing Q/$
S \%
Therefore, — —  =—oht.cosa %Q
sing OO
2S L

_ N\
0' j—
ht.sin2a E; Eqn. 3b

N

» The upright is under compre§sion counteractiegémdency of the diagonal tension to pull
the flanges together (Fig . The forgedeting on each upright consists of the vertical
components of the for cting in all the stripseataining to each upright, i.e. in “d”strips

(since the strips h @\u it strips horizontally).

* The vertical eQ\%})onent of h.cotstrips is equal to S€f Fig. 4(b)) and hence by
proportion@'&: we have :

P, :S:d:hcota

d
— PU = _SF tana > Eqgn. 3¢




816 THEORY OF PRIMARY STRESSES. (cont?AP TRA

S \?\\/
* If each strip is connected to the flange by awetythe force on this rivet i al to the force
o.t.sina in the strip. Since the strips are of equal widthizontally, rivet per inch run R” can be
given by : $\
OO
RI — S ’
h.cosa $®
D
N

* All the primary stresses having been expr %&?in; of the knowns, namely the load P and the
dimensions h and d; to complete the solutig tlggeamn must be found. To computg the principle of
least work may be used. Q

S
*The internal work in one bay on/ eam is gibpgrthe expression :

?\
2 %@ 2 2
w=2<¢8ht+Z2 % A h+Z " Ad

6??& 2E 2E

Note: A . indicates single uprights; all other terms arasnoal notations.




2SS 2r . \%
7 hsinag  sin2a =an. 30;/@\?\
~sd it N
o, = dang = -—.tana > 5@5( e
A, Ase CS

O
o :—% cota——% cota % Egn. 3f

« Differentiating to obtain the minimum aﬁq omtjithe constant facto’/&, there results :

d_W 8d cosZa Célna d cosa

da  ht sin a@ . cosa 2A sinla

*Substituting into this qu&%’on the values foesses given by equations 3d, 3e and 3f and equating
to zero results in th% tion :

4, a g, g
-J.Q%&— v+ % _—g
E§§ n-a cosa sIina

From wh

»

> Eqgn. 3¢

o
tan“ g =
o-0,




#5588 THEORY OF PRIMARY STRESSES. (contd
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?5/
ht Q
1+2 Q/
tan @ =— 2% > Egn. 3h <<\<>
dt
1+ — O
A C

6/
*Thus, by the use of equation 3h in equations @an obtain the stresses in terms of the
applied shear force S and dimensions of the

In plane webs, the angtegenerally doe&@ltﬁdeviate more than a few dedreesthe average

value of 40. %Q?\
O
&
Q}
N
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SEQONDARY STRESSES IN PURE DIAGONAL TENSION
- > e f A

(a) - () VA

Secondary actions in diogonal—tension beams

Figu§r§§\$
*Equations 3d, 3e and 3tlefine the primary %‘;ﬁe of stress caused dirégtlgiagonal tension.
However there are also secondary stress€SWrhictidshe taken into account when necessatry.

*The vertical component of thveeb s e® acting on the flanges cause bending of the flanges
between uprights as shown in Fj ). Consideheglange as a continuous beam supported by the
uprights we have : ?s

-The total b g load in one bay is equaPto

-Assumiﬁéeﬁ]is bending load to be uniformly distitéd, the primary bending
mo occurs at the uprights and is

F v = Si* tangy
max 12‘

Note that in the middle of the bay there is a secondayimum moment half as large as the primary moment




(SJ,)\ NDARY STRESSES IN PURE DIAGONAL TENSION:(pntd ..)
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Fi pws the deflections of the flanges when the ingnstiffness of the flanges is small and these
Neibg that are atthoh the

acHOAS sufficient to relieve the diagonal iensstress in those diagonal
flange near the middle of the bay. é\

stresses than computed on the assumption thatgbmhls are e ly loadeld€f Fig (5b)).

*This redistribution of the web tension stressesea reduc;@\ In the secondary flange bending entsn
Wagner has proposed the following formulas, orbtmié@ simplifying assumptions to account fos thi

effect : \$\
2S5 2
Jmax = (1+ CZ) . max — C3 =’ tana
ht sin 2a e 12h

Graphs for the factorszﬁnd(éée?éiven irSection 4of Ref [1].

*The diagonals attached near the uprights must maker this defic;’ in stress and thus carghler

sFactor Gand G are functio&&gsthe flange —flexibility parametat, which is defined by
&
09 . 1 1)t . Ean 3
Qj» ad =dsing .4 + agn. 3l

BN I, 1. )4h

Where subscripts T and C denote tension and cosipreBanges respectively.




k ) AVIOR OF UPRIGHTS IN PURE DIAGONAISEENSION

o \\ ,/og g strength of the uprights, be it sengt double (on both sides of the web) cannot be
calatated by ordinary column formulas as the welwhich the uprights are f@éned) restrains the

uprights against buckling. $ \

*As soon as the upright begins to buckle out ofplame of the web, %nsion diagonals crossiag t
upright becomes kinked at the upright, and thelleeferces in th gonals develop components abrm
to the web tending to force the upright back i@ plane of t@eb (Ref Fig (6a)).
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Effect of diogonal tension on column length of uprights,

Figure 6
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\ / g force exerted by the diagonalitenband upon the upright is proportional to the
deflegfionsfout of the plane of the web) of theigpt at the point where the diagdpal crosses ie Th
upright is therefore subjected to a distributeddxeerse restoring load that | portional to the
deflection.

» Fig 6(b) gives the graph for the calculationsdouble uprights s @%g the raf®y/Pe as a function
of the ratiod/h, where B is the buckling load of the upright a& the Euler load.

» The assumption of clamped edges would be judtdidy i tlie ends of the uprights were fastened
rigidly to the flanges and if the flanges had amite t @nal stiffness. Usually, beam flangesd a
rather low torsional stiffness and thus do notiiw;héssumption of clamped edges for the upsight

* Single uprights are, in effect, eccentrical columns, as long as the load is infinitesith#he
uprights are very closely spaced, the w twieeniprights must deflect (on the average) in tineesa
manner as the uprights. Under this goffthition, treeetricity is equal to the initial valieeall along the
upright and does not change withyifierease in [dhd.upright is therefore designed by the formulsedu
for an eccentrically loaded coQgression member nadligible deflection.

* If the uprights were ex ‘szy widely spaced, riinsgor portion of the web would remain in its ongi
plane (on the avera}i%‘ onsequently, the compeekmds acting on the uprights would remain in its
original plane, an upright would act as areetrecally loaded column under vertical loads, gtce
for the modifi&\ introduced by the elastic sa@arse support furnished by the web.



